Understanding Lean Six Sigma Projects

PMI-NNV Dinner Meeting

February 17, 2016

Have you ever seen a project which. . .

- Was intended to improve an existing product or service, or to launch a new product or service
- Was completed successfully (i.e. no "material" issues in executing the product or service requirements)
- And failed to fully achieve the business objectives used to justify the project?

Today's discussion topics:

- The difference between *execution* risk and *solution* risk
- Why we tend to overlook solution risks
- What Lean and Six Sigma are
- How Lean Six Sigma (LSS) minimizes solution risk for:
 - Improvement projects
 - New product and service launches
- How to tell when to pay attention to potential solution risk

Project execution risk

- A risk is "an uncertain event or condition that, if it occurs, has a positive or negative effect on one or more project objectives"
- Project objectives are defined by the initiator or sponsor who authorizes the project
- Practically speaking, completion of the project itself becomes the objective—not the achievement of the goals which motivated it
- Risk control is focused on "internal-to-project" dimensions—schedule, budget, and quality (fulfillment of requirements)
- Monitoring and controlling processes throughout the project life cycle enable identification and response to risk conditions and events

Solution risk

- The risk that the requirements will fail to produce the desired results—no matter how well they are executed
- Solution risk management entails minimizing the chance that the design of a solution (i.e. the requirements) will not meet customer (end user, stakeholder) wants, needs, and expectations

- Released July 2014
- Taken off the market August 2015

Why is solution risk an issue?

Consider how decisions on "what to do" (the solution) are typically made:

- Diving-in
- Frame blindness
- Lack of frame control

- Group failure
- Unexamined values

What is Lean?

- A process improvement discipline that began in the 1970s with the development of the Toyota Production System (TPS)
- Lean is designed to improve profitability by reducing costs caused by the many forms of **waste** that exist in operations
- In Lean terms, waste is defined as any activity that a customer would not be willing to pay for because the activity does not improve the performance, reliability, durability, or price of the product or service they receive
- Although the Lean discipline was developed in manufacturing, it has been successfully applied to service and transactional operations

Lean waste reduction principles and methods

The developers of Lean identified 8 basic types of waste and formulated a set of principles and methods to deal with each:

Category	Waste Type	Lean Principle	Lean Methods
People	Motion Waiting Excess processing Non-utilization of knowledge	Workplace management	Standard work Workplace organization (5S, VM) Continuous improvement (<i>Kaizen</i>) teams
Quantity	Overproduction Transportation Inventory	Just-in-time (JIT)	Production smoothing Pull (<i>Kanban</i>) systems Continuous flow Lead time reduction (e.g. SMED/TPM)
Quality	Defects	Prevention	Mistake proofing (<i>Poka-yoke</i>) Autonomous defect control

What is Six Sigma?

- An organizational performance measure that focuses on the capability of processes in meeting customer requirements
- A structured, systematic process improvement methodology developed by Motorola during the 1980s
- The Six Sigma process improvement methodology is designed to enable organizations to approach Six Sigma performance levels

Six Sigma as a performance measure

- There is variation in the output of every process
- The amount of variation in output can be measured by standard deviations (sigma) around the output mean
- Variation that causes some output to fall outside of customer specifications is bad
- Variation is controlled in a Six Sigma process to make the output mean 6 standard deviations away from the *closest* customer specification limit
- This distance between the mean and the limit means that *virtually zero* bad output is produced

The horizontal axis represents the range of output variation in standard deviations (sigma)

Six Sigma as a process improvement methodology

- Begins with a clear understanding of a problem which:
 - Negatively affects customers
 - Has causes that are unknown (or not fully understood)
- Progresses through a set of rigorous steps to separate the true root causes from the many potential causes
- Concludes with the implementation of improvements to solve the problem, along with controls to make sure it never comes back
- Like Lean, the Six Sigma process improvement methodology grew up in manufacturing but has also be successfully applied to service and transactional processes

The foundational principle of Six Sigma:

Y = f(x)

- Y is the **output** variable
- Y values are **dependent** on the effect of the Xs
- Changes in Y values are symptoms of variation in the Xs
- We can only **monitor** the Y mean level and variation, not manage or control it

- The Xs are the **input** and **process** variables
- There are typically multiple X variables for every Y (X₁...X_n)
- Variation in the Xs is **independent**
- Mean level and variation in the critical Xs are the cause of the mean level and variation in the Y
- We can identify the critical Xs and control their mean level and variation in order to effect improvement and stability in the Y

High-level Six Sigma improvement steps

Define	Measure	Analyze	Improve	Control
 Define the problem Determine project scope and goals Charter the project team Determine the primary Y metric Identify any secondary Y metrics 	 Validate the Y measurement system Clarify customer specs Document current process Determine baseline process capability Identify all potential Xs 	 Characterize the XY relationships Separate critical Xs from trivial Xs using graphical and statistical analysis 	 Validate the critical Xs Identify potential solutions Select and pilot the best solution Plan for full rollout execution 	 Measure and confirm results Build control plans and procedures Implement control charts Hand-off controls to process owners

New product or service: Design for Six Sigma (DFSS)

- DFSS is used when a new opportunity is identified, or when customers are "under served" by existing products or services
- "Entrepreneurship is management." Creativity is *enhanced* by applying a disciplined process
- Relentless focus on the customer. Really understand the customer's:
 - Needs
 - "Jobs" they use the product or service to accomplish
 - Psychological drivers
 - Desired outcomes

High-level DFSS design steps

Define	Investigate	Conceptualize	Optimize Build
 Identify the target customer and customer segment Establish a high level hypothesis about the customer problem to solve Draft a business case based on the hypothesis 	 Analyze customer jobs and pain points Develop the customer problem statement Look at how competitors solve the customer problem Update the business case 	 Generate solution ideas Narrow the potential solution set Test solution ideas with storyboards, prototypes, or a "minimum viable product" Select solution to build 	 Develop and launch beta Iterate improvements based on feedback Create production, support and operational risk control plans Finalize requirements Conduct full launch and scale production

How the DFSS process works

- Customers are actively involved in each step
- No progress to the next phase until the current phase requirements are satisfied

How LSS helps ensure high quality solutions

Project Risk Area	LSS Countermeasures and Controls
Problem identification	Structured problem definition process
	 Customer needs analysis—"critical-to-quality" based requirements
Solution development	 Comprehensive and systematic consideration of all factors
	 Data driven factor winnowing process
	 Experimental validation of the "critical few" factors
	 Systematic generation of potential solutions
Solution approval	Structured solution selection process
Execution and results	Solution piloting
tracking	 Results confirmation/auditing
	Comprehensive operational control plans

When should Lean Six Sigma be used?

Whenever the answer to *both* of the following questions is "no":

Are you sure you understand the critical factors for:

- Permanently solving the problem?
- Or, winning customers over to the new product or service?

Are the consequences of failure relatively light?

QUESTIONS?